PHARMACOLOGY AND TOXICOLOGY

Interaction of Afobazole with σ_1 -Receptors

S. B. Seredenin, T. A. Antipova, M. V. Voronin, S. Yu. Kurchashova*, and A. N. Kuimov*

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 148, No. 7, pp. 53-55, July, 2009 Original article submitted December 3, 2008

In vitro radioligand assay revealed interaction of afobazole with σ_1 -receptors (Ki=5.9×10⁻⁶ M). Translocation of σ_1 -receptors from the endoplasmic reticulum to the outer membrane was demonstrated by confocal microscopy. Experiments were performed on the model of HT-22 immortalized hippocampal cells after incubation with afobazole in a concentration of 10^{-8} M.

Key Words: afobazole; σ_i -receptor; radioligand binding; receptor translocation

Previous studies demonstrated anxiolytic and neuroprotective properties of afobazole (5-ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole hydrochloride) [1,2]. Prevention of stress-induced decrease in binding capacity of the GABA_A receptor benzodiazepine region serves as a neurochemical target for afobazole [3]. However, there are no data on direct interaction between this compound and GABA_A receptor. Analysis of model pharmacophores revealed stereochemical similarity between afobazole and (+)-pentazocine (prototypic ligand of σ_1 -receptors) [4].

This work was designed to study ligand properties of afobazole in relation to σ_1 -receptors. We evaluated the possibility of receptor translocation from the endoplasmic reticulum to the outer cell membrane upon interaction with afobazole. Published data show that this phenomenon is typical of σ_1 -receptor agonists [8,12].

MATERIALS AND METHODS

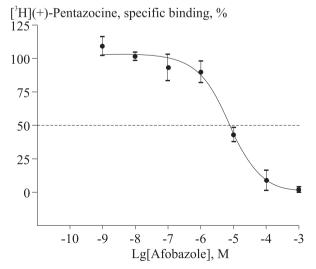
The substance afobazole was synthesized at the V. V. Zakusov Institute of Pharmacology (Fig. 1). The compound was used in concentrations of 10^{-3} - 10^{-9} M.

V. V. Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences; *A. N. Belozerskii Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Russia. *Address for correspondence:* niipharm@mail.ru. M. V. Voronin

The interaction of afobazole with σ_1 -receptors was studied on the Jurkat cell line (neuroreceptor assay, in collaboration with the Seger Company) [7]. [³H] (+)-Pentazocine (8 nM) served as the labeled ligand. Haloperidol (IC₅₀=2.2×10⁻⁸ M, Ki=1.3×10⁻⁸ M, Hill coefficient (nH)=1.2) was used as the reference preparation. Nonspecific binding was studied in the presence of 10 μ M haloperidol. Incubation with cells was performed at 22°C for 120 min.

The ability of afobazole to cause σ_1 -receptor translocation to the outer neuronal membrane was studied by means of immunofluorescence with the immortalized mouse hippocampal cell line HT-22. Afobazole in a final concentration of 10⁻⁸ M was added to the culture medium. Previous studies on the model of oxidative stress and glutamate toxicity showed that this dose of afobazole produces a neuroprotective effect [2]. The cells were fixed with 4% paraformaldehyde (10-min treatment) 30 min and 1 h after addition of afobazole. These cells were washed 4 times with phosphatebuffered saline (10 min) and treated with 250 mM sucrose solution (4°C, 36 h) and 1 mg/ml BSA (room temperature, 2 h) [13]. Double immunofluorescence staining was performed with antibodies to σ_1 -receptors (Santa Cruz Biotechnology) and antibodies to calnexin (endoplasmic reticulum membrane-associated protein, Abcam) in a solution of phosphate-buffered saline and

Fig. 1. Structure of afobazole.


BSA (1 mg/ml). The cells were incubated with antibodies to σ_1 -receptors at 4°C for 12 h and antibodies to calnexin at room temperature for 1 h.

RESULTS

During displacement of σ_1 -receptor agonist [${}^{3}H$](+)-pentazocine (8 nM) from binding sites, IC $_{50}$, Ki, and nH for afobazole were 7.1×10^{-6} M, 5.9×10^{-6} M, and 0.9, respectively (Fig. 2). The results of radioligand binding indicate that afobazole can be considered as an σ_1 -receptor ligand.

During the interaction with ligands, σ_1 -receptor can migrate to the cell membrane (in the composition of lipid microdomains, lipid rafts) [9]. Radioligand study indicates that it is necessary to evaluate the effect of afobazole on intracellular localization of σ_1 -receptors [13].

Immunofluorescence staining of mouse hippocampal cell line HT-22 with antibodies to σ_1 -receptors and calnexin (protein marker of the endoplasmic reticulum) showed that addition of afobazole (10^{-8} M) to the culture medium is followed by intracellular redistribution of σ_1 -receptors. Under control conditions, σ_1 -receptors were revealed in the neuronal body, but

Fig. 2. Interaction of afobazole with the σ_1 -receptor. Binding of afobazole to the σ_1 -receptor was studied in 2 repetitions for each concentration of the compound.

not in axons. The location of σ_1 -receptors was similar to that of calnexin (Fig. 3). Thirty minutes after addition of afobazole to the culture medium, σ_1 -receptor staining was revealed not only in the neuronal body, but also in axons. These receptors were located near the cell plasma membrane (including the axons) 1 h after afobazole treatment. However, calnexin was associated with endoplasmic reticulum membrane in the neuron body.

 σ_1 -Receptors were discovered in 1976 and initially classified to the group of opioid receptors [11]. Cloning and evaluation of the amino acid sequence showed that these receptors should be considered as independent structures. σ_i -Receptors are mainly located on the endoplasmic reticulum and have two transmembrane domains [5]. σ_i -Receptors produce a regulatory effect on intracellular signal transduction (primarily on Ca²⁺ transport) and cell energy balance. Moreover, these receptors have a modulatory effect under conditions of induced changes in main neurotransmitter processes [10]. Specific binding to σ_1 -receptors is typical of neurosteroids, some physiologically active neuropeptides, psychopharmacological products, and other compounds [14]. σ_1 -Receptor translocation to the outer membrane after ligand-induced cell activation is of considerable functional importance [12]. This phenomenon and involvement of σ_i -receptors in signal transduction determine their role in prevention of cell dysfunction. We showed that afobazole serves as a ligand of σ_1 -receptors. Moreover, afobazole causes σ_1 -receptor translocation to the outer membrane. Our results and published data on the mechanism of cell damage [6] explain the neuroprotective effect of afobazole and recovery of GABA, receptor function under the influence of this compound. The data suggest that this anxiolytic holds much promise as a cytoprotective drug under various pathological conditions.

REFERENCES

- I. P. Galaeva, T. L. Garibova, T. A. Voronina, and S. B. Seredenin, *Byull. Eksp. Biol. Med.*, **140**, No. 11, 545-548 (2005).
- T. A. Zenina, I. V. Gavrish, D. S. Melkumyan, et al., Ibid., 140, No. 8, 161-163 (2005).
- 3. S. B. Seredenin, T. A. Voronina, G. G. Neznamov, et al., Vestn.

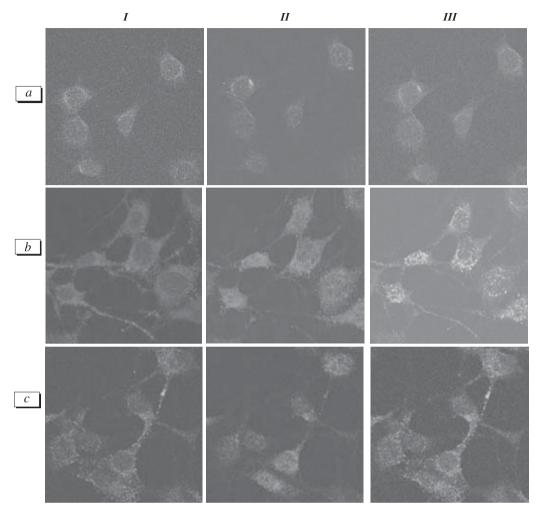


Fig. 3. Immunofluorescence staining of σ_1 -receptors and calnexin in the immortalized mouse hippocampal cell line HT-22 (×400). Control staining (a); staining 30 min after addition of afobazole in a concentration of 10^{-8} M to the incubation medium (b); staining 1 h after addition of afobazole in a concentration of 10^{-8} M to the incubation medium (c), I, σ ,-receptors; II, calnexin; III, double staining.

- Ros. Akad. Med. Nauk, 11, 3-9 (1998).
- 4. S. Y. Ablordeppey and R. A. Glennon, *Sigma Receptors. Chemistry, Cell Biology and Clinical Implications*, Ed. R. R. Matsumoto, New York (2007), pp. 71-98.
- E. Aydar, C. P. Palmer, V. A. Klyachko, and M. B. Jackson, Neuron, 34, No. 3, 399-410 (2002).
- 6. Brain Damage and Repair // Molecular Research to Clinical Therapy, Eds. T. Herdegen and J. Delgado-Garcia, New York (2004).
- M. E. Ganapathy, P. D. Prasad, W. Huang, et al., J. Pharmacol. Exp. Ther., 289, No. 1, 251-260 (1999).
- 8. T. Hayashi and T. P. Su, Ibid., 306, No. 2, 726-733 (2003).

- 9. T. Hayashi and T. P. Su, Ibid., 306, No. 2, 718-725 (2003).
- 10. T. Hayashi and T. P. Su, *Expert Opin. Ther. Targets*, **12**, No. 1, 45-48 (2008).
- 11. W. R. Martin, C. G. Eades, J. A. Thompson, et al., Pharmacol. Exp. Ther., 197, No. 3, 517-532 (1976).
- 12. T. A. Mavlyutov and A. E. Ruoho, *J. Molec. Signal*, **2**, No. 3, 8 (2007).
- M. P. Morin-Surun, T. Collin, M. Denavit-Saubie, et al., Proc. Natl. Acad. Sci. USA, 96, No. 14, 8196-8199 (1999).
- 14. A. H. Newman and A. Coop, *Sigma Receptors Chemistry. Cell Biology and Clinical Implications*, Ed. R. R. Matsumoto, New York (2007), pp. 25-44.